The University of Nottingham

SCHOOL OF COMPUTER SCIENCE
A LEVEL X MODULE, AUTUMN/SPRING SEMESTER 20XX-20XX
«MODULE NAME»
Time allowed: X Hours and Y Minutes

Candidates may complete the front cover of their answer book and sign their desk card but must NOT write anything else until the start of the examination period is announced

«Answer Rubric»
<Calculator Rubric»

Dictionaries are not allowed with one exception. Those whose first language is not English may use a standard translation dictionary to translate between that language and English provided that neither language is the subject of this examination. Subject specific translation dictionaries are not permitted.

No electronic devices capable of storing and retrieving text, including electronic dictionaries, may be used.

DO NOT turn examination paper over until instructed to do so
ADDITIONAL MATERIAL: <List Additional/Supplementary Materials MUST be specified in this section of the paper Handouts, MCQ, number of answer books x , graph paper, statistical tables (Neaves, SI, E\&E), statutes, Books allowed, None».
INFORMATION FOR INVIGILATORS: «to include any announcements or to indicate if the paper can be taken away at the end of the examination / None».

SECTION A

EXAMPLE 1

1. Topic 1: <Type_Topic». 0
a. <Type_Text>

$$
[\ll \gg \text { Marks }]
$$

b. <Type_Text>
c. <Type_Text>

EXAMPLE 2

Question 1: <Type_Topic>. <Type_Text>

> [overall «» marks]
a. <Type_Text>
[<< \gg Marks]
b. <Type_Text>
[\ll \gg Marks]
c. <Type_Text>
[\ll \gg Marks]

Question 2: <Type_Topic>. <Type_Text>
[overall \ll \gg marks]

Either (a) <Type_Text>
[\ll \gg Marks]

Or (b) <Type_Text>

$$
[\ll \gg \text { Marks }]
$$

Question 3: <Type_Topic>. <Type_Text>
[overall \ll \gg marks]

Question 4: <Type_Topic>. <Type_Text>

```
[overall < < > > marks]
```


SECTION B

Question 5: <Type_Topic>. Answer two parts of this question, each carry \ll \gg marks.

[overall \ll \gg marks]

(a) <Type_Text>
(e) <Type_Text>
(b) <Type_Text>
(f) <Type_Text>
(c) <Type_Text>
(g) <Type_Text>
(d) <Type_Text>
(h) <Type_Text>

Question 6: <Type_Topic>. <Type_Text>

1. <Type_Text>

$$
[\ll \gg \text { Marks }]
$$

2. <Type_Text>
3. <Type_Text>
[<< \gg Marks]
[overall \ll \gg marks]
Question 7: <Type_Topic>. <Type_Text>
[overall \ll \gg marks]
Question 8: <Type_Topic>. <Type_Text>
[overall \ll \gg marks]
Question 9: <Type_Topic>. <Type_Text>
[overall \ll \gg marks]
Question 10: <Type_Topic>. <Type_Text>
[overall \ll \gg marks]

The following pages contain more examples about the formatting and provide a domain specific template for computer science.

SECTION A

Question 1:

[overall XX marks]
Answer to the following question with graphics

Question 2:

[overall XX marks]
Answer the following question involving the following graphics and divided into sub-questions.

1. this is one question with inline equations $\sum_{j=1}^{n} x_{j} \log \left(x_{j}\right)$
2. this is one question with equations

$$
\mathbf{y} \Longleftrightarrow \mathbf{A x} \equiv\left\{\begin{array}{l}
y_{1}=a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\
\ldots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}
\end{array}\right.
$$

3. this is a question about a Table

$$
\delta: \begin{array}{c|c|c}
& 0 & 1 \\
\hline A & A & A, B \\
B & C & C \\
C & \emptyset & \emptyset .
\end{array}
$$

SECTION B

Question 3:

[overall 20 marks]
This is a question about pseudocodes

```
Algorithm 1 General Differential Evolution Framework
    Generate an initial population of \(N p\) individuals
    Evaluate fitness of each solution in population \(N p\)
    while termination condition is not met do
        for each \(\mathbf{x}^{\mathbf{i}}\) in \(N p\) do
            Generate provisional offspring \(\mathbf{x}^{\text {off' }}\) by mutation
            Generate offspring \(\mathbf{x}^{\text {off }}\) by crossover
            Evaluate fitness of \(\mathbf{x}^{\text {off }}\)
            Make a note whether \(\mathbf{x}^{\mathbf{i}}\) or \(\mathbf{x}^{\text {off }}\) has a better performance
        end for
        for each \(\mathbf{x}^{\mathbf{i}}\) in \(N p\) do
            Perform all the replacements by choosing the best between parent offspring
        end for
    end while
```


IMPORTANT NOTE:

 COMPILE WITH

 COMPILE WITH}

XeLaTex
AND NOT
LaTex OR pdfLaTex

