STAT 251 Formula Sheet

Measures of Center

n

Mean: T == nl
Median:

— Taitwot.. Fay

n

n \th n+1\th
. ~ n obs.+ (2= obs.
Ifnlseventhen:v:(2) 2( z)

If n is odd then Z = ”Tch obs.

\

Measures of Variability

Range: R = Tiargest — Tsmallest
2 ZL 1(’/1_1)2 Zq 171_”1’

Variance: s =
2o rt*x>2 \/Zl 1 T3 ;—nz?

n—1

Standard deviation: s =
IQR: IQR = Q3 — Ql
Method to compute Q,:
e Sort data from smallest to largest: z(1) < x2) < ... <x(y)

e Compute the number np + 0.5

If np + 0.5 is an integer, m, then: Q) = T(m)

70<m>+9@’<m+1)
Q(p)
Outliers:

e Values smaller than Q1 — (1.5 x IQR) are outliers
e Values greater than Q3 + (1.5 x IQR) are outliers

\.

If np+ 0.5 is not an integer, m < np+ 0.5 < m+ 1 for some integer m, then:

Discrete Random Variables

Consider a discrete random variable X

Probability Mass Function (pmf): f(z) = P(X = z)
1. f(z) >0 forall x in X

2. 3 f@) =
Cumulative Distributive Function (cdf): F(z) = P(X <) =), ., f(k)
Mean (1) E(X) = ¥, o/ (x)

) =
Expected value: E(g(X)) =), g(z)f(z)
Variance (02): Var(X) =Y (z — p)?f(z) =
SD (o): SD(X) = +/Var(X)

Sets and Probability

Properties of Probability:

General Addition Rule: P(AUB) = P(A)+ P(B) — P(AN B)
Complement Rule: P(A°) =1— P(A)

If A C B then P(AN B) = P(A)

If A C B then P(A) < P(B)

P(0)=0and P(S)=1

e 0<P(A) <1lforall A

Conditional Probability:

e P(A|B) =

iy and P(B|A) = P
o Multiplication Rule: P(AN B) = P(B) x P(A|B) and
P(ANB) = P(A) x P(B|A)

e Events A and B are independent if and only if P(AN B)
and thus P(A|B) = P(A) and P(B|A) = P(B)

— P(A)P(B)

P(B|A;)P(A;)
= S, P(A)P(BIA)
_ P(B|A;)P(A))
= P(BIA)P(A1)+P(B[As)P(Az)+. +P(BIA,) P(An)

Bayes’ Theorem: P(A;|B)
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Continuous Random Variables

Consider a continuous random variable X

Probability Density Function (pdf): P(a < X <b) = f; f(x)dx
1. f(xz) >0 for all x
2. [7 fla)de =1

Cumulative Distributive Function (cdf): F(z) = P(X <z) = [*_

Median: z such that F(z) = 0.5

Q1 and Qs: x such that F'(z) = 0.25 and « such that F(z) = 0.75
Mean (1) ) = ff° ofloyis

Expected value: j g( x)dw

Variance (02): Vm =7 2f(x)dr = E(X?) — [E(X))?
SD (o): SD(X) Var( )




Summarizing Main Features of f(x)

Consider two random variables XY
Properties of Probability:

E(aX +b)=aF(X)+b, fora,beR

EX+Y)=EX)+ E(Y), for all pairs of X and Y

E(XY)=E(X)E(Y), for independent X and Y
Var(aX +b) = a*Var(X), for a,b € R

o Var(X + Y) Var(X) 4+ Var(Y)
Var( Y) =Var(X)+ Var(Y), for independent X and Y

Covariance:
e Cov(X,Y)=EX -EX)][Y-EY)=EXY)-EX)EY)
If X and Y are independent, Cov(X,Y) =0
o Var(X +Y)=Var(X) +Var(Y) +2Cov(X,Y)
e Var(aX +bY +c) =a*Var(X) + v*Var(Y) + 2abCov(X,Y)

\

Maximum and Minimum of Independent Variables

Given n independent random variables X1, X, ..., X,,.
For each X;, cdf Fx(x) and pdf is fx(z).

Maximum of Independent Random Variables:
Consider V = maz{Xy, Xo, ..., X;,}

cdf of V
FV(U) :P(VSU):P(XI SUaXQS’U?“'?XnSU)
= P(X; <v)P(X3 <0)...P(X,, <v) = Fx, (v)Fx,(v)...Fx, (v)
= [Fx (v)]™ ; if X;’s are all identically distributed
pdf of V

fr) = Fy(v) = L Fv(v) = §[Fx(0)]" = n[Fx(©)]" " 5 Fx (v)
= n[Fx ()"~ fx(v)

Minimum of Independent Random Variables:
Consider U = min{ Xy, Xa, ..., X, }

cdf of U

Sum and Average of Independent Random Variables

Sum of Independent Random Variables:
Y =a1 X1 +aXs + ... +a, X, for a,as,...,a, € R

° E(Y) = alE(Xl) + CLQE(XQ) + ...+ anE(Xn)
e Var(Y) = a?Var(Xy) + a3Var(Xa) + ... + a2Var(X,)

e E(Y)=(a1+az+..+ay)u
o Var(Y) = (af + a3 + ...+ a2)o?

Average of Independent Random Variables:
X1, Xo, ..., X,, are n independent random variables

° Y: X1+X2:...+Xn
. B[X) =1
o Var(X| =

[E(X1) + E(X2) + ... + E(X,)]
LVar(Xy) + Var(Xs) + ... + Var(X,,)]

e E[X|=pu
o Var[X| = e

n

If n random variables X; have common mean p and common variance o2 then,

If n random variables X; have common mean p and common variance o2 then,

Fy(u) =PU<u)=1-PU>u)=1-P(X1>u,Xo>u,..,X,>u)
=1— P(X; > uw)P(Xs > u)..P(X, > u)
=1-1[1-Fx, ()]l — Fx,(uw)]...[1 = Fx,, (u)]
=1—[1— Fx(u)]™;if X;’s are all identically distributed
pdf of U
fulu) = Fj(u) = {1 = [1 = Fx(u)]*} = 0= n[l - Fx ()"~ L (- Fx (u))
=n[l = Fx(u)]"~" fx(u)

\.

Some Continuous Distributions

Uniform Distribution: X ~ U(a,b)

Mean: u=FEX)= af-24-b ]
3 b—a
Variance: o2 = Var(X) = %
pdf of X cdf of X
e 0 r<a
_ )y @ <zx<b
f=) {O otherwise Flr)=%2% a<z<b
1 r>b

Exponential Distribution: X ~ Exp()\)

Mean: u=FEX)= %
Variance: 02 = Var(X) = 55
pdf of X cdf of X

0 z <0

Ae ™ x>0
f(l){o z <0

l—e ™ 2>
F(L):{ e x>0




Normal Distribution

Normal Distribution: X ~ N(u,0?)
Standardized Normal: Z ~ N(0,1) where Z = X—p

68-95-99.7 Rule:

e approximately 68% of observations fall within o of u
e approximately 95% of observations fall within 20 of u

e approximately 99.7% of observations fall within 3o of u

\.

Bernoulli and Binomial Random Variables

Bernoulli Random Variable:

Bernoulli random variable X has only two outcomes, success and failure.
P(Success) = p and P(Failure) =1—p

Bernoulli Distribution:
X ~ Bernoulli(p)

pmf: P(X =z) =p"(1—p)'~*forx =0,1
Mean: uw=EX)=p
Variance: o2 = Var(X) = p(1 —p)

Binomial Random Variable:
Binomial random variable X is the number of successes for n independent trials
and each trial has the same probability of success p.

Binomial Distribution:

X ~ Bz’n(n p)
pmf: P(X () ""Lforx—O,l,Q
cdf: P(ng)zz () —p)" 7f01“3[:—0,1,2,...,n
Note: (Z) = z'(: z)!
Mean: p=EX)=np
Variance: 02 = Var(X) = np(1 — p)
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Geometric Distribution

Geometric Random Variable:
Geometric random variable X is the number of independent trials needed until
the first success occurs.

Geometric Distribution:
X ~ Geo(p) where p is the probability of success

pmf: P(X =) =p(1—p)*! forz=1,2,3,...
cdf: P(X <z)=1-(1-p)® forx=1,2,3,...
Mean: p=EX)= %
Variance: o2 = Var(X) = 1p_2p

Poisson Distribution

Poisson Process:
Random variable X is the number of occurrences in a given interval.

Poisson Distribution:
X ~ Poisson(\) Where A is the rate of occurrences

pmf: PX=2x2)=2% forx—0,1,2,3
cdf: P(X <x) :Zf 0 e forxf0,1,2,3
Mean: w=FEX)=2A\
Variance: o2 = Var(X) =\

o Let T ~ Exp(A) be the time between two consecutive occurrences of events.
(Can also be the waiting time for first event.)

Poisson Approximation to the Binomial Distribution

Let X ~ Bin(n,p) be a binomial random variable. If n is large (n > 20)
and p or 1 — p is small (np < 5 or n(1 — p) < 5), then we can use a Poisson
random variable with rate A = np to approximate the probabilistic behaviour of X.

X ~ Poisson(np), approx. for z =0,1,2,...n

\.

Central Limit Theorem

Let X1, Xs,..., X,, be a random sample from an arbitrary population/distribution
with mean p and variance o2. When n is large (n > 20) then

2

X = M ~ N(u, %), approx.
When dealing with sum, the CLT can still be used. Then

T=X1+Xo+ ..+ X, =nX
T ~ N(nu,no?), approx.

Normal Approximation to the Binomial Distribution

Let X ~ Bin(n,p). When n is large so that both np > 5 and n(1 —p) > 5. We
can use the normal distribution to get an approximate answer. Remember to use
continuity correction.

X ~ N(np,np(1l —p)), approx.

\.

Normal Approximation to the Poisson Distribution
Let X ~ Poisson(\). When A is large (A > 20) then the Normal distribution can
be used to approximate the Poisson distribution. Remember to use continuity

correction.

X ~ N(\ )\, approx.




Continuity Correction

Consider continuous random variable Y and discrete random variable X.

o P(X >4)=P(X >5)=P(Y >45)
o P(X >4)=P(Y >35)

o P(X <4)=P(X <3)=P(Y <35)
o P(X <4)=P(Y <45)

o P(X =4)=P(35<Y <45)

\.

Point Estimators

Suppose that X7, Xs,..., X,, are random samples from a population with mean p

and variance 2.

e T is an unbiased estimator of
- 21 T

n

xTr =

e s is an unbiased estimatoy of g*
imy(zi—®)” 3L, @i —nT

2 __
§T = n—1 n—1

e 0 is the parameter, 0 is the point estimator. When E(#) = 6, 0 is an unbiased
estimator. The bias of an estimator is bias(f) = E(0) — 6.

\

Confidence Interval

(1 — @)100% Confidence Interval for population mean pu:
(point estimator of p is T)

General Form: point estimate + margin of error

When o2 is known: T + za =

When 02 is unknown: T + t%,nqﬁ

Typical z values of a:

a=0.1 90% Z% = 20.05 — 1.645
a=0.05 95% Zg = Z0.025 = 1.96
a = 0.01 99% Z% = Z20.005 — 2.575

(1 — @)100% Confidence Interval for p; — po:

1 1

(T1 = T2) £tg nytna—28p\/7m + 52

\.

Pooled Standard Deviation
2 2

Requires assumptions that population variances are equal: 03 = 03 = o
The pooled standard deviation s, estimates the common standard deviation o.

5. — \/(nl—l)sf-ﬂ—(ng—l)sg
p

ni+ng—2

Testing of Hypotheses about u

H,: Null hypothesis is a tentative assumption about a population parameter.
H,: Alternative hypothesis is what the test is attempting to establish.

o H,:p> o vs Hy: < po (one-tail test, lower-tail)
o H,:p<p,vs Hy:p> p, (one-tail test, upper-tail)
o H,:p=p,vs Hy: pu# po (two-tail test)

Test Statistic:
Case 1: o2 is known
z =k ~ N(0,1)

v

Case 2: ¢2 is unknown
t = E*Sllo

v

~tp1

Type I and Type 1II errors:
Type I error:  rejecting H, when H, is true
Type II error:  not rejecting H, with H, is false
P(Type I error) = «
P(Type II error) = 3

Power is the probability of rejecting H,, when H, is false.
Power =1-p

Comparison of two means:
Two independent populations with means p1 and ps.
Assume random samples, normal distributions, and equal variances (0% = o3).

o Hy:pg —po > Ay vs Hy i iy — po < A, (lower-tail)
o Hy:pg —po <A, vs Hy: g — po > A, (upper-tail)
o Hy:pyg —po =20, vs Hy: g — po # A, (two-tail)
Test Statistic:
b _ Gax)-A
o

sp is the pooled standard deviation

~ tn1+n272

Rejection Rules:

Consider test statistic z, and significance value a.
e Lower-tail test: Reject H, if z < z,
e Upper-tail test: Reject H, if z > z,
e Two-tail test: Reject H, if |2] > 24




Analysis of Variance (ANOVA)

One-way ANOVA:
k = number of populations or treatments being compared

11 = mean of population 1 or true average response when treatment 1 is applied.

1 = mean of population k or true average response when treatment k is applied.

Assumptions:

e For each population, response variable is normally distributed
e Variance of response variable, o2 is the same for all the populations

e The observations must be independent

Hypotheses:

H,: py=po=...= g

Hg i pi # pj for i # j

Notation:

yi; is the j** observed value from the i" population/treatment.
Total mean: U = L= Zjil Yis

Total sample size: n .
Grand total: Y. = Zle Z;;l Yij
Grand mean: 7= = Zim Zjtivis
h n n . -
2 l; 1(ni 1)5? Z;’L;l(yi]*yi-)z

_ _ 2 _
s° = presyn = MSE, where s; = Py |

The ANOVA Table:

Source of Variation ‘ df ‘ Sum of Squares ‘ Mean Square ‘ F-ratio
Treatment k—1 SSTr MSTr = % IKI{SS}:;
Error n—=k SSE MSE = %
Total n—1 SST
SST = SSTr + SSE
SST = Z’L 1 Z] l(yU Y. ) Zz 1 Zg 1 y1] - 7y
SSTr Zz 1 Z] 1(?1 y ) Z’L 1 n; yL ’rllyQ
n; _ nl k 72 _ k
SSE = 21:1 Z] 1(Wis — 7. )? Zz 1 Z - > i '7:” =3 1(n;—1)s;

Test Staktistic:

Tr
Fobs = MSE Fvl,ug

vl =df(SSTr) =k — 1
v2=df(SSE)=n—k
Reject H, if Fops > Fo vy v,

K2

Covariance and Correlation Coefficient

On a scatter plot, each observation is represented as a point with x-coord x; and
y-coord ;.

Sample Covariance Cov(z,y)
Cov(z,y) =755 X0 (@ — 7)Y — 1)
L iy — W]
n —_
1 [ wiyi — ]

e If z and y are positively associated, then Cov(z,y) will be large and positive
e If x and y are negatively associated, then Cov(z, y) will be large and negative

o If the variables are not positively nor negatively associated, then Cov(z,y)
will be small

Sample Correlation Coefficient: r

=7 e (Tl::')(y‘sy') where s, = r— 2 and 5y = W
. _ Cov(z,y)
[aiarrree

e Always falls between -1 and +1

e A positive r value indicates a positive association

e A negative r value indicates a negative association

e 1 value close to +1 or -1 indicates a strong linear association

e 7 value close to 0 indicates a weak association

\.

Simple Linear Regression

Regression Line:
Simple linear regression model: y = 3, + f1x + ¢
Bo, B1, and o2 are parameters, y and ¢ are random variables. ¢ is the error term.

True regression line: E(y) = B, + Prx

Least squares regression line: § = B, + ﬁlx

7, Bo, and 61 are point estimates for y, B,, and [1.
Residual: ¢; = y; — 9;

/B 1 1(55L w)(yl y) Z?:lwiy’lin@ — Sy

1= Z:l 1(T —)2 Z:L=1 xf—nfg Sx
z; _ 5 —

PR i £ Py

Coefficient of Determination: 72

The proportion of observed y variation that can be explained by the simple linear
regression model.




Estimating 02 (SLR)

~2 2 _ SSE S (yi—i)?
o° = §° = =
n—2 n—2

Error Sum of Squares (SSE):
SSE = Z:‘l:1 512 = 27:1(.% - g7)2 = 27:1[% - (ﬂo + /Blzi)]Q

Total Sum of Squares (SST):
SST = 370 (yi — )
SST is sum of squared deviations about sample mean of observed y values.

Regression Sum of Squares (SSR):

SSR = 3 L, (4 — 9)°
SSR is total variation explained by the linear regression model.

SST = SSR + SSE

Coefficient of Determination from SST, SSR, and SSE:
F2—1_ SSE
SST
or
2 _ SSR
T = §sT

SSE is a measure of variation in y left unexplained by linear regression model.

Slope Parameter §; (SLR)

When ;1 = 0 there is no linear relationship between the two variables.

Hypotheses:
H,:5,=0
Ha : ﬂl 7é 0

Test statistic:
S

_ B
, = n—2, Where sz =
tobs S, ~ tn—2, where s5 = ——

Reject H, if |tops| > ta n—2

(1 — a)100% Confidence Interval for S;:
PrEte n2sp




