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Mean: x =
∑n
i=1 xi
n = x1+x2+...+xn

n

Median: If n is even then x̃ =
(n2 )th obs.+(n+1

2 )th obs.

2

If n is odd then x̃ = n+1
2

th
obs.

Measures of Center

Range: R = xlargest − xsmallest

Variance: s2 =
∑n
i=1(xi−x)2

n−1 =
∑n
i=1 x

2
i−nx

2

n−1

Standard deviation: s =
√∑n

i=1(xi−x)2

n−1 =
√∑n

i=1 x
2
i−nx2

n−1

IQR: IQR = Q3−Q1

Method to compute Q(p):

• Sort data from smallest to largest: x(1) ≤ x(2) ≤ ... ≤ x(n)

• Compute the number np+ 0.5

• If np+ 0.5 is an integer, m, then: Q(p) = x(m)

• If np+ 0.5 is not an integer, m < np+ 0.5 < m+ 1 for some integer m, then:
Q(p) =

x(m)+x(m+1)

2

Outliers:

• Values smaller than Q1− (1.5× IQR) are outliers

• Values greater than Q3 + (1.5× IQR) are outliers

Measures of Variability

Consider a discrete random variable X

Probability Mass Function (pmf): f(x) = P (X = x)

1. f(x) ≥ 0 for all x in X

2.
∑
x f(x) = 1

Cumulative Distributive Function (cdf): F (x) = P (X ≤ x) =
∑
k≤x f(k)

Mean (µ): E(X) =
∑
x xf(x)

Expected value: E(g(X)) =
∑
x g(x)f(x)

Variance (σ2): V ar(X) =
∑
x(x− µ)2f(x) = E(X2)− [E(X)]2

SD (σ): SD(X) =
√
V ar(X)

Discrete Random Variables

Properties of Probability:

• General Addition Rule: P (A ∪B) = P (A) + P (B)− P (A ∩B)

• Complement Rule: P (Ac) = 1− P (A)

• If A ⊆ B then P (A ∩B) = P (A)

• If A ⊆ B then P (A) ≤ P (B)

• P (∅) = 0 and P (S) = 1

• 0 ≤ P (A) ≤ 1 for all A

Conditional Probability:

• P (A|B) = P (A∩B)
P (B) and P (B|A) = P (A∩B)

P (A)

• Multiplication Rule: P (A ∩B) = P (B)× P (A|B) and
P (A ∩B) = P (A)× P (B|A)

• Events A and B are independent if and only if P (A ∩B) = P (A)P (B)
and thus P (A|B) = P (A) and P (B|A) = P (B)

Bayes’ Theorem: P (Ai|B) = P (B|Ai)P (Ai)∑n
i=1 P (Ai)P (B|Ai)

= P (B|Ai)P (Ai)
P (B|A1)P (A1)+P (B|A2)P (A2)+...+P (B|An)P (An)

Sets and Probability

Consider a continuous random variable X

Probability Density Function (pdf): P (a ≤ X ≤ b) =
´ b
a
f(x)dx

1. f(x) ≥ 0 for all x

2.
´∞
−∞ f(x)dx = 1

Cumulative Distributive Function (cdf): F (x) = P (X ≤ x) =
´ x
−∞ f(t)dt

Median: x such that F (x) = 0.5
Q1 and Q3: x such that F (x) = 0.25 and x such that F (x) = 0.75
Mean (µ): E(X) =

´∞
−∞ xf(x)dx

Expected value: E(g(X)) =
´∞
−∞ g(x)f(x)dx

Variance (σ2): V ar(X) =
´∞
−∞(x− µ)2f(x)dx = E(X2)− [E(X)]2

SD (σ): SD(X) =
√
V ar(X)

Continuous Random Variables
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Consider two random variables X,Y
Properties of Probability:

• E(aX + b) = aE(X) + b, for a, b ∈ R
• E(X + Y ) = E(X) + E(Y ), for all pairs of X and Y

• E(XY ) = E(X)E(Y ), for independent X and Y

• V ar(aX + b) = a2V ar(X), for a, b ∈ R
• V ar(X + Y ) = V ar(X) + V ar(Y )
V ar(X − Y ) = V ar(X) + V ar(Y ), for independent X and Y

Covariance:

• Cov(X,Y ) = E[X − E(X)][Y − E(Y )] = E(XY )− E(X)E(Y )
If X and Y are independent, Cov(X,Y ) = 0

• V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y )

• V ar(aX + bY + c) = a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y )

Summarizing Main Features of f(x)

Sum of Independent Random Variables:
Y = a1X1 + a2X2 + ...+ anXn, for a1, a2, ..., an ∈ R

• E(Y ) = a1E(X1) + a2E(X2) + ...+ anE(Xn)

• V ar(Y ) = a2
1V ar(X1) + a2

2V ar(X2) + ...+ a2
nV ar(Xn)

If n random variables Xi have common mean µ and common variance σ2 then,

• E(Y ) = (a1 + a2 + ...+ an)µ

• V ar(Y ) = (a2
1 + a2

2 + ...+ a2
n)σ2

Average of Independent Random Variables:
X1, X2, ..., Xn are n independent random variables

• X = X1+X2+...+Xn
n

• E[X] = 1
n [E(X1) + E(X2) + ...+ E(Xn)]

• V ar[X] = 1
n2 [V ar(X1) + V ar(X2) + ...+ V ar(Xn)]

If n random variables Xi have common mean µ and common variance σ2 then,

• E[X] = µ

• V ar[X] = σ2

n

Sum and Average of Independent Random Variables

Given n independent random variables X1, X2, ..., Xn.
For each Xi, cdf FX(x) and pdf is fX(x).

Maximum of Independent Random Variables:
Consider V = max{X1, X2, ..., Xn}

cdf of V
FV (v) = P (V ≤ v) = P (X1 ≤ v,X2 ≤ v, ...,Xn ≤ v)

= P (X1 ≤ v)P (X2 ≤ v)...P (Xn ≤ v) = FX1
(v)FX2

(v)...FXn(v)
= [FX(v)]n ; if Xi’s are all identically distributed

pdf of V

fV (v) = F ′V (v) = d
dvFV (v) = d

dv [FX(v)]n = n[FX(v)]n−1 d
dvFX(v)

= n[FX(v)]n−1fX(v)

Minimum of Independent Random Variables:
Consider U = min{X1, X2, ..., Xn}

cdf of U
FU (u) = P (U ≤ u) = 1− P (U > u) = 1− P (X1 > u,X2 > u, ...,Xn > u)

= 1− P (X1 > u)P (X2 > u)...P (Xn > u)
= 1− [1− FX1

(u)][1− FX2
(u)]...[1− FXn(u)]

= 1− [1− FX(u)]n ; if Xi’s are all identically distributed

pdf of U

fU (u) = F ′U (u) = d
du{1− [1− FX(u)]2} = 0− n[1− FX(u)]n−1 d

du (−FX(u))
= n[1− FX(u)]n−1fX(u)

Maximum and Minimum of Independent Variables

Uniform Distribution: X ∼ U(a, b)
Mean: µ = E(X) = a+b

2

Variance: σ2 = V ar(X) = (b−a)2

12

pdf of X

f(x) =

{
1
b−a a ≤ x ≤ b
0 otherwise

cdf of X

F (x) =


0 x < a
x−a
b−a a ≤ x ≤ b
1 x > b

Exponential Distribution: X ∼ Exp(λ)
Mean: µ = E(X) = 1

λ
Variance: σ2 = V ar(X) = 1

λ2

pdf of X

f(x) =

{
λe−λx x ≥ 0

0 x < 0

cdf of X

F (x) =

{
1− e−λx x ≥ 0

0 x < 0

Some Continuous Distributions
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Normal Distribution: X ∼ N(µ, σ2)
Standardized Normal: Z ∼ N(0, 1) where Z = X−µ

σ

68-95-99.7 Rule:

• approximately 68% of observations fall within σ of µ

• approximately 95% of observations fall within 2σ of µ

• approximately 99.7% of observations fall within 3σ of µ

Normal Distribution

Bernoulli Random Variable:
Bernoulli random variable X has only two outcomes, success and failure.
P (Success) = p and P (Failure) = 1− p

Bernoulli Distribution:
X ∼ Bernoulli(p)
pmf: P (X = x) = px(1− p)1−x for x = 0, 1

Mean: µ = E(X) = p
Variance: σ2 = V ar(X) = p(1− p)

Binomial Random Variable:
Binomial random variable X is the number of successes for n independent trials
and each trial has the same probability of success p.

Binomial Distribution:
X ∼ Bin(n, p)
pmf: P (X = x) =

(
n
x

)
px(1− p)n−x for x = 0, 1, 2, ..., n

cdf: P (X ≤ x) =
∑x
i=0

(
n
i

)
pi(1− p)n−i for x = 0, 1, 2, ..., n

Note:
(
n
x

)
= n!

x!(n−x)!

Mean: µ = E(X) = np
Variance: σ2 = V ar(X) = np(1− p)

Bernoulli and Binomial Random Variables

Geometric Random Variable:
Geometric random variable X is the number of independent trials needed until
the first success occurs.

Geometric Distribution:
X ∼ Geo(p) where p is the probability of success
pmf: P (X = x) = p(1− p)x−1 for x = 1, 2, 3, ...
cdf: P (X ≤ x) = 1− (1− p)x for x = 1, 2, 3, ...

Mean: µ = E(X) = 1
p

Variance: σ2 = V ar(X) = 1−p
p2

Geometric Distribution

Poisson Process:
Random variable X is the number of occurrences in a given interval.

Poisson Distribution:
X ∼ Poisson(λ) where λ is the rate of occurrences

pmf: P (X = x) = λxe−λ

x! for x = 0, 1, 2, 3, ...

cdf: P (X ≤ x) =
∑x
i=0

λie−λ

i! for x = 0, 1, 2, 3, ...

Mean: µ = E(X) = λ
Variance: σ2 = V ar(X) = λ

• Let T ∼ Exp(λ) be the time between two consecutive occurrences of events.
(Can also be the waiting time for first event.)

Poisson Distribution

Let X ∼ Bin(n, p) be a binomial random variable. If n is large (n ≥ 20)
and p or 1 − p is small (np < 5 or n(1 − p) < 5), then we can use a Poisson
random variable with rate λ = np to approximate the probabilistic behaviour of X.

X ∼ Poisson(np), approx. for x = 0, 1, 2, ...n

Poisson Approximation to the Binomial Distribution

Let X1, X2,..., Xn be a random sample from an arbitrary population/distribution
with mean µ and variance σ2. When n is large (n ≥ 20) then

X = X1+X2+...+Xn
n ∼ N(µ, σ

2

n ), approx.

When dealing with sum, the CLT can still be used. Then

T = X1 +X2 + ...+Xn = nX
T ∼ N(nµ, nσ2), approx.

Central Limit Theorem

Let X ∼ Bin(n, p). When n is large so that both np ≥ 5 and n(1 − p) ≥ 5. We
can use the normal distribution to get an approximate answer. Remember to use
continuity correction.

X ∼ N(np, np(1− p)), approx.

Normal Approximation to the Binomial Distribution

Let X ∼ Poisson(λ). When λ is large (λ ≥ 20) then the Normal distribution can
be used to approximate the Poisson distribution. Remember to use continuity
correction.

X ∼ N(λ, λ), approx.

Normal Approximation to the Poisson Distribution
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Consider continuous random variable Y and discrete random variable X.

• P (X > 4) = P (X ≥ 5) = P (Y ≥ 4.5)

• P (X ≥ 4) = P (Y ≥ 3.5)

• P (X < 4) = P (X ≤ 3) = P (Y ≤ 3.5)

• P (X ≤ 4) = P (Y ≤ 4.5)

• P (X = 4) = P (3.5 ≤ Y ≤ 4.5)

Continuity Correction

Suppose that X1, X2,..., Xn are random samples from a population with mean µ
and variance σ2.

• x is an unbiased estimator of µ

x =
∑n
i=1 xi
n

• s2 is an unbiased estimator of σ2

s2 =
∑n
i=1(xi−x)2

n−1 =
∑n
i=1 x

2
i−nx

2

n−1

• θ is the parameter, θ̂ is the point estimator. When E(θ̂) = θ, θ̂ is an unbiased

estimator. The bias of an estimator is bias(θ) = E(θ̂)− θ.

Point Estimators

(1− α)100% Confidence Interval for population mean µ:
(point estimator of µ is x)

General Form: point estimate ± margin of error
When σ2 is known: x± zα

2

σ√
n

When σ2 is unknown: x± tα
2 ,n−1

s√
n

Typical z values of α:
α = 0.1 90% zα

2
= z0.05 = 1.645

α = 0.05 95% zα
2

= z0.025 = 1.96
α = 0.01 99% zα

2
= z0.005 = 2.575

(1− α)100% Confidence Interval for µ1 − µ2:

(x1 − x2)± tα
2 ,n1+n2−2sp

√
1
n1

+ 1
n2

Confidence Interval

Requires assumptions that population variances are equal: σ2
1 = σ2

2 = σ2

The pooled standard deviation sp estimates the common standard deviation σ.

sp =
√

(n1−1)s21+(n2−1)s22
n1+n2−2

Pooled Standard Deviation

Ho: Null hypothesis is a tentative assumption about a population parameter.
Ha: Alternative hypothesis is what the test is attempting to establish.

• Ho : µ ≥ µo vs Ha : µ < µo (one-tail test, lower-tail)

• Ho : µ ≤ µo vs Ha : µ > µo (one-tail test, upper-tail)

• Ho : µ = µo vs Ha : µ 6= µo (two-tail test)

Test Statistic:
Case 1: σ2 is known
z = x−µo

σ√
n

∼ N(0, 1)

Case 2: σ2 is unknown
t = x−µo

s√
n

∼ tn−1

Type I and Type II errors:
Type I error: rejecting Ho when Ho is true
Type II error: not rejecting Ho with Ho is false

P (Type I error) = α
P (Type II error) = β

Power is the probability of rejecting Ho, when Ho is false.
Power = 1− β

Comparison of two means:
Two independent populations with means µ1 and µ2.
Assume random samples, normal distributions, and equal variances (σ2

1 = σ2
2).

• Ho : µ1 − µ2 ≥ ∆o vs Ha : µ1 − µ2 < ∆o (lower-tail)

• Ho : µ1 − µ2 ≤ ∆o vs Ha : µ1 − µ2 > ∆o (upper-tail)

• Ho : µ1 − µ2 = ∆o vs Ha : µ1 − µ2 6= ∆o (two-tail)

Test Statistic:
t = (χ1−χ2)−∆o

sp
√

1
n1

+ 1
n2

∼ tn1+n2−2

sp is the pooled standard deviation

Rejection Rules:
Consider test statistic z, and significance value α.

• Lower-tail test: Reject Ho if z ≤ zα
• Upper-tail test: Reject Ho if z ≥ zα
• Two-tail test: Reject Ho if |z| ≥ zα

2

Testing of Hypotheses about µ
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One-way ANOVA:
k = number of populations or treatments being compared
µ1 = mean of population 1 or true average response when treatment 1 is applied.
...
µk = mean of population k or true average response when treatment k is applied.

Assumptions:

• For each population, response variable is normally distributed

• Variance of response variable, σ2 is the same for all the populations

• The observations must be independent

Hypotheses:
Ho : µ1 = µ2 = ... = µk
Ha : µi 6= µj for i 6= j

Notation:
yij is the jth observed value from the ith population/treatment.

Total mean: yi· = yi·
ni

=
∑ni
j=1 yij

ni
Total sample size: n = n1 + n2 + ...+ nk
Grand total: y·· =

∑k
i=1

∑ni
j=1 yij

Grand mean: y·· = y··
n =

∑k
i=1

∑ni
j=1 yij

n

s2 =
∑k
j=1(ni−1)s2i
n−k = MSE, where s2

i =
∑ni
j=1(yij−yi·)

2

ni−1

The ANOVA Table:

Source of Variation df Sum of Squares Mean Square F-ratio

Treatment k − 1 SSTr MSTr = SSTr
k−1

MSTr
MSE

Error n− k SSE MSE = SSE
n−k

Total n− 1 SST

SST = SSTr + SSE

SST =
∑k
i=1

∑ni
j=1(yij − y··)2 =

∑k
i=1

∑ni
j=1 y

2
ij − 1

ny
2
··

SSTr =
∑k
i=1

∑ni
j=1(yi· − y··)2 =

∑k
i=1

1
ni
y2
i· − 1

ny
2
··

SSE =
∑k
i=1

∑ni
j=1(yij − yi·)2 =

∑k
i=1

∑ni
j=1 y

2
ij −

∑k
i=1

y2i·
ni

=
∑k
i=1(ni − 1)s2

i

Test Statistic:
Fobs = MSTr

MSE ∼ Fv1,v2 v1 = df(SSTr) = k − 1
v2 = df(SSE) = n− k

Reject Ho if Fobs ≥ Fα,v1,v2

Analysis of Variance (ANOVA)

On a scatter plot, each observation is represented as a point with x-coord xi and
y-coord yi.

Sample Covariance: Cov(x, y)
Cov(x, y) = 1

n−1

∑n
i=1(xi − x)(yi − y)

= 1
n−1 [

∑n
i=1 xiyi −

∑n
i=1 xi

∑n
i=1 yi

n ]

= 1
n−1 [

∑n
i=1 xiyi − nxy]

• If x and y are positively associated, then Cov(x, y) will be large and positive

• If x and y are negatively associated, then Cov(x, y) will be large and negative

• If the variables are not positively nor negatively associated, then Cov(x, y)
will be small

Sample Correlation Coefficient: r

r = 1
n−1

∑n
i=1(xi−xsx

)(yi−ysy
), where sx =

√∑n
i=1(xi−x)2

n−1 and sy =
√∑n

i=1(yi−y)2

n−1

r = Cov(x,y)
sxsy

• Always falls between -1 and +1

• A positive r value indicates a positive association

• A negative r value indicates a negative association

• r value close to +1 or -1 indicates a strong linear association

• r value close to 0 indicates a weak association

Covariance and Correlation Coefficient

Regression Line:
Simple linear regression model: y = βo + β1x+ ε
βo, β1, and σ2 are parameters, y and ε are random variables. ε is the error term.

True regression line: E(y) = βo + β1x

Least squares regression line: ŷ = β̂o + β̂1x
ŷ, β̂o, and β̂1 are point estimates for y, βo, and β1.
Residual: εi = yi − ŷi

β̂1 =
∑n
i=1(xi−x)(yi−y)∑n

i=1(xi−x)2 =
∑n
i=1 xiyi−nxy∑n
i=1 x

2
i−nx2 = r

sy
sx

β̂o =
∑n
i=1 yi−β̂1

∑n
i=1 xi

n = y − β̂1x

Coefficient of Determination: r2

The proportion of observed y variation that can be explained by the simple linear
regression model.

Simple Linear Regression
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σ̂2 = s2 = SSE
n−2 =

∑n
i=1(yi−ŷi)2
n−2

Error Sum of Squares (SSE):

SSE =
∑n
i=1 ε

2
i =

∑n
i=1(yi − ŷi)2 =

∑n
i=1[yi − (β̂o + β̂1xi)]

2

SSE is a measure of variation in y left unexplained by linear regression model.

Total Sum of Squares (SST):
SST =

∑n
i=1(yi − y)2

SST is sum of squared deviations about sample mean of observed y values.

Regression Sum of Squares (SSR):
SSR =

∑n
i=1(ŷi − y)2

SSR is total variation explained by the linear regression model.

SST = SSR + SSE

Coefficient of Determination from SST, SSR, and SSE:
r2 = 1− SSE

SST
or
r2 = SSR

SST

Estimating σ2 (SLR)

When β1 = 0 there is no linear relationship between the two variables.

Hypotheses:
Ho : β1 = 0
Ha : β1 6= 0

Test statistic:
tobs = β̂1

sβ̂1
∼ tn−2, where sβ̂1

= s
sx
√
n−1

Reject Ho if |tobs| ≥ tα2 ,n−2

(1− α)100% Confidence Interval for β1:

β̂1 ± tα2 ,n−2sβ̂1

Slope Parameter β1 (SLR)
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