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Abstract

A temperature wave propagates along a long thin bar of a metallic sample
when subjected to periodic heating. In this way it is demonstrated that there
is no wave nature in these improperly called thermal waves by showing that
they do not transport energy and its propagation properties can be used to
determine the thermal diffusivity of the material.

1 Introduction

A metallic sample heated by a periodic heat source, the resulting temperature
oscillations inside the sample have the same mathematical expression as highly
damped waves, the so called thermal waves. It must be pointed out that thermal
waves cannot be considered as real traveling waves because they show neither wave
fronts nor reflection and refraction phenomena so it is demonstrated that there is
no wave nature in these improperly called thermal waves because they do not
transport energy [1].

The purpose of this experiment is to understand the basis of heat flow, recognize
heat conduction as a diffusive process by Fourier analysis, solutions of the heat
equation, decompose an oscillation into its harmonics, observe different harmonics
and how they damp with different rates, and ultimately calculate the thermal
diffusivity of a metal [2].

2 Theoretical background

2.1 Fourier solution for thermal conduction

The special case relevant to our problem is one-dimensional heat conduction through
temporally periodic boundary conditions. Given the periodic nature of the heating
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function, the solution in the form of a Fourier series:
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where dn =
√

2D
ωn

are “damping lengths” and P1 is the gradient of the average

temperatures. The oscillatory component of the above solution is a periodic func-
tion comprising the pulsing frequency ω1 and only its odd multiples (ω3 = 3ω1,

ω5 = 5ω1, ω7 = 7ω1, etc.). The damping lengths dn =
√

2D
ωn

are mathematically

similar to the skin depth and represent the distance over which the amplitude of
each harmonic decreases to 1/e of its value at x = 0. As dn ∝ 1/

√
n, the higher

harmonics damp away at smaller distances; ultimately, only the fundamental fre-
quency will survive far from the heat source.

3 Experimental procedure

Fig. 1 shows the experimental setup. Four K-type thermocouples were clenched
equidistantly to a rod of copper of length about 0.5 m and diameter 30 mm. The
metallic rod was heated by a square pulse using a 25 W cartridge heater at a rate
of 5 mHz. The heater was connected to a switching circuit which was controlled
by using a Labview program which sends a square pulse to the relay.
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Figure 1: Schematic diagram of the experimental setup.

The thermocouples are first calibrated using Stein-Hart Calibration. DAQ card is
attached to collect the data from thermocouple and plot the predicted temperature
values as a function of time.The process of heating was continued until the dynamic
equilibrium had been achieved after the initiation of the setup.
Once the dynamic equilibrium had been achieved, Fast Fourier Transform (FFT)
was performed on the finely sampled numerical data sets and then was plotted. The
odd harmonics were seen by FFT graphs. With the help of Fourier Transformed
graph, the amplitudes of temperature oscillations (in a dynamic equilibrium) of
the first thermocouple (TC1) and the fourth thermocouple (TC4) were measured.
With the help of those, the damping coefficient and the velocity of thermal wave
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was calculated. Once the damping coefficient and velocity of the thermal wave had
been calculated, the thermal diffusivity “D” was calculated by D = v/2ε. Here
“ε” represents the damping coefficient.

4 Results

Fig. 2 shows that the amplitude of the oscillations decreases with the distance
far from the origin. This also illustrates that these oscillations are not in phase;
there is a phase lag between successive thermocouples. The triangular shape arises
out of the choice of actuation frequency and the distance of the first thermocouple
from the heater surface. At first thermocouple, there is not fluctuation in the fre-
quency (maximum amplitude) that is why there occurs triangular variation. At the
thermocouple which is farthest from the heat source, the temperature fluctuation
(much smaller in amplitude) is nearly a perfect sinusoidal.
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Figure 2: Temperature oscillations at different points along the copper bar. The
thermocouples which are nearer to the heat source have higher average tempera-
tures.

Now by looking at the Fig. 3 the thermocouples which are closer to the heat source
have the larger amplitudes as compared to the thermocouples which are farther
away from the heater. It also shows that there occur only odd harmonics. There
are only three odd harmonics which decay exponentially.
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Figure 3: Fourier transforms of the temperatures measured by the thermocouples.

In order to calculate the diffusivity of the material, damping coefficient ε has to
be calculated by using following expression

ε =
1

∆x
ln(

A1

A2

) , (2)

where A1 and A2 are the respective amplitudes of the first and the fourth ther-
mocouple’s oscillations and ∆x represents the separation distance between them
which is 0.06 m in this experiment. The values of the amplitudes and the phase
lag has been taken from the Fig. 4 and tabulated in the Table 1 and Table 2
respectively.

Table 1: Amplitudes of the oscillations of 1st and 4th thermocouple.
Lower amplitude (L1) Higher amplitude (L2) Difference (L2-L1)

A1 49.81 54.77 4.96
A2 48.93 51.92 2.99

Table 2: Phase lag between 1st and the 4th thermocouple.
1st thermocouple phase (t1) 4th thermocouple phase (t2) ∆t(s)

6034 6042 8

Now from the Eq. 2, the damping coefficient (ε) is 9.235 m−1. With the help of
phase lag (∆t), the wave velocity has been calculated by v = ∆x/∆t and that is
0.0075 ms−1.

Hence, the thermal diffusivity is calculated by following expression

D =
v

2ε
= 4.061× 10−4 m2s−1 (3)
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Figure 4: Fourier transforms of the temperatures measured by the thermocouples.

5 Conclusion

The purpose of this experiment was to measure the thermal diffusivity of the
copper metal. Hence that purpose is achieved and the experimental value is close
enough to the theoretical value [4]. This experiment provides an opportunity to get
acquainted with heat conduction in a way that is essentially different from that of
classical experiments on stationary heat transmission. This experiment also allows
one to learn thermal diffusivity measuring techniques in a simple and pedagogical
way.
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