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Theorem 2.3. DeMorgan’s Laws for sets. Let A and B be sets. Then we have
1. AUB=ANB
2. ANB=AUB

Proof. To prove that AUB = AN B , we start by showing that each set is a subset of
the other.The definition of a subset states that A is a subset of B if every element a € A
is also an element of B. Since A and B are sets, if A C B and B C A, then A = B.

Suppose * € AU B , which means 2 ¢ AU B. Then v ¢ A and 2 ¢ B. Hence, z € A
and z € B. This means © € ANB. Thus, AUB Cc AN B. Now suppose, z € AN B.
Then x € Aand z € B. Hence v ¢ A and x ¢ B, which means that ¢ AU B. Therefore,
r € AU B. Thus proving that AUB = AN B.

To prove that AN B = AU B , we start by showing that each set is a subset of the
other. Suppose x € AN B , which means x ¢ AN B. Then x ¢ A and = ¢ B. Hence,
r € Aand x € B. This means ¢ € AU B. Thus, AN B C AUB. Now suppose, © € AUB.
Then z € Aand z € B. Hence # ¢ A and x ¢ B, which means that ¢ AN B. Therefore,
r € AN B. Thus proving that ANB = AU B.

[

Theorem 4.4. Let a,b and ¢ € Z. If a divides b and b divides ¢ then a divides c.

Proof. Assume a divides b and b divides c. Since a divides b, there exists n; € Z such that
an,=Db. Since b divides c, there exists ny such that bno=c.Since we know the existential
statement is true in the universe you can use it to create an instance of an object with the
property it describes. So, we let m=nins.Then

am=— anine = bny = ¢

Since am=c, we have shown that a divides c.
[ |

Theorem 7.11. Suppose that R is a relation on A. Then R is both symmetric and anti-
symmetric, if and only if R C Id4.

Proof. Assume R is symmetric and anti-symmetric. This means that all ordered pairs
(a,b) € R, there must be a pair (b,a) € R, and this can only be true when a=b. This
means every ordered pair in R is a value a€ A relates to itself. Since the Idy is a relation
that includes every value in A related to itself, R must be a subset of Id4.

Assume R C Id4. This means that R can only have elements that are also in Idg4.
Therefore every element of R is an ordered pair (a,b) € A where a=b. Since a=b in every
element of R, it satisfied the conditions for anti-symmetry. Also, Since (a,b) = (b,a) , R
also satisfies the conditions for symmetry.
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Theorem 10.9. Let x # 1 be any real number. For all natural numbers n we have
el = gl a4t
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Proof. First, we define set S as the set n€ N such that >, _ ¢! =2
I will induct on n
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Therefore, S=N.

Theorem 3.2. If F is a family of sets and A € F then A C UF.

Proof. Let x€ A be arbitrary.We know A€ F . Therefore, we know that there exists A €F
such that x€ A. Therefore by definition of UF, which states that the union of F is the
collections of all sets that are elements of F where there exists x€A for some AeF, x
€UF. Since x is arbitrary, we have shown that A C UF.
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Theorem 6.1. If 0 < a < b where a and b are real numbers, then a? < b2

Proof. We assume that b > a > 0. Since a > 0, if we multiply both sides of b > a by a, we
get ab > a?. Similarly, since b > 0, if we multiply both sides of b > a by b, we get b? > ab.
We can combine ab > a? and b* > ab to get b*> > ab > a®. Therefore by the transitive
property, b> > a?. Thus we have shown that if b > a > 0, then b? > a?.
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